Fusion Framework for Video Event Recognition
نویسندگان
چکیده
This paper presents a multisensor fusion framework for video activities recognition based on statistical reasoning and D-S evidence theory. Precisely, the framework consists in the combination of the events’ uncertainty computation with the trained database and the fusion method based on the conflict management of evidences. Our framework aims to build Multisensor fusion architecture for event recognition by combining sensors, dealing with conflicting recognition, and improving their performance. According to a complex event’s hierarchy, Primitive state is chosen as our target event in the framework. A RGB camera and a RGB-D camera are used to recognise a person’s basic activities in the scene. The main convenience of the proposed framework is that it firstly allows adding easily more possible events into the system with a complete structure for handling uncertainty. And secondly, the inference of DempsterShafer theory resembles human perception and fits for uncertainty and conflict management with incomplete information. The cross-validation of real-world data (10 persons) is carried out using the proposed framework, and the evaluation shows promising results that the fusion approach has an average sensitivity of 93.31% and an average precision of 86.7%. These results are better than the ones when only one camera is used, encouraging further research focusing on the combination of more sensors with more events, as well as the optimization of the parameters in the framework for improvements.
منابع مشابه
Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملAction Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملFusion Framework for Emotional Electrocardiogram and Galvanic Skin Response Recognition: Applying Wavelet Transform
Introduction To extract and combine information from different modalities, fusion techniques are commonly applied to promote system performance. In this study, we aimed to examine the effectiveness of fusion techniques in emotion recognition. Materials and Methods Electrocardiogram (ECG) and galvanic skin responses (GSR) of 11 healthy female students (mean age: 22.73±1.68 years) were collected ...
متن کاملThe Anatomy of A Multi-Camera Video Surveillance System
We present a framework for multi-camera video surveillance. The framework consists of three phases: detection, representation, and recognition. The detection phase handles multi-source spatio-temporal data fusion for efficiently and reliably extracting motion trajectories from video. The representation phase summarizes raw trajectory data to construct hierarchical, invariant, and content-rich d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012